

Environment – Waste to NCALLY NEALED HEALED HEALED HEALED HEALED NOT The process requires a ~2:1 hydrogen to carbon F • Most coal types do not produce enough hydrogen • Additional hydrogen is created in the reformi • Pyrolysis step also produces a large amount of m perfect for reforming with steam • $CH_4 + H_2 O \rightarrow 3H_2 + CO$ • $CH_4 + 2H_2 O \rightarrow 4H_2 + CO_2$	Diesel EALERT H sented without the ardides are written mononoxid ng step ethane, on 1 or 2 rogen bu	SE ALERT holding with the holdered on GBEC disc available: We le ratio
Description HSCALEXT	EALERT H sented willow to the articles are written on the latest information monoxid n ng step ethane, on 1 or 2 rogen but o gas compo ter pyrolysis	SEALERT holding with the house on GGEC also available. We le ratio
Declamant The atomic results of the document by QED heavy Consult of CMEC ⁺ June 1 may relate a coupled, representation of The problem any submatch with the barrier of the second	sented without che ardides are written monoxid n ng step ethane, on 1 or 2 rogen bu o gas compo ter pyrolysis	ading with the hased on GBCC with manifolds. We de ratio
 The process requires a ~2:1 hydrogen to carbon if Most coal types do not produce enough hydrogen Additional hydrogen is created in the reformi Pyrolysis step also produces a large amount of m perfect for reforming with steam CH₄ + H₂O → 3H₂ + CO CH₄ + 2H₂O → 4H₂ + CO₂ Depending on operating conditions either reactivily be favoured. Reaction 2 generates more hyd as a consequence generates more CO2 	monoxid n ng step ethane, on 1 or 2 rogen bu	le ratio
 Most coal types do not produce enough hydrogen Additional hydrogen is created in the reformi Pyrolysis step also produces a large amount of m perfect for reforming with steam CH₄ + H₂O → 3H₂ + CO CH₄ + 2H₂O → 4H₂ + CO₂ Depending on operating conditions either reactivity will be favoured. Reaction 2 generates more hyd as a consequence generates more CO2 	n ng step ethane, on 1 or 2 rogen bu	It
 Additional hydrogen is created in the reformi Pyrolysis step also produces a large amount of m perfect for reforming with steam CH₄ + H₂O → 3H₂ + CO CH₄ + 2H₂O → 4H₂ + CO₂ Depending on operating conditions either reactive will be favoured. Reaction 2 generates more hyd as a consequence generates more CO2 	ng step ethane, on 1 or 2 rogen bu	t sition
 Pyrolysis step also produces a large amount of m perfect for reforming with steam CH₄ + H₂O → 3H₂ + CO CH₄ + 2H₂O → 4H₂ + CO₂ Depending on operating conditions either reactivities will be favoured. Reaction 2 generates more hyd as a consequence generates more CO2 	op as compo ethane,	t sition
 CH₄ + H₂O → 3H₂ + CO CH₄ + 2H₂O → 4H₂ + CO₂ Depending on operating conditions either reactivity will be favoured. Reaction 2 generates more hydrogram as a consequence generates more CO2 	on 1 or 2 rogen bu gas compo ter pyrolysis	It
 CH₄ + 2H₂O → 4H₂ + CO₂ Depending on operating conditions either reactive will be favoured. Reaction 2 generates more hydrox as a consequence generates more CO2 	on 1 or 2 rogen bu gas compo ter pyrolysis	It
Depending on operating conditions either reactive will be favoured. Reaction 2 generates more hydrig as a consequence generates more CO2	on 1 or 2 rogen bu gas compo fter pyrolysis	it sition
 4 4 6 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	gas compo ter pyrolysis	sition
 		5
C N E P i i 1	lydrogen	23.4112
N E P I I T	0	16.7571
E P i	tetnane	31.7013
r i. n	ronane	1 7765
n	Butane	0.9432
	-Butane	0.2282
i.	Pentane	1.3242
n	-Pentane	1.0329
c	6+	1.7787
C	lxygen	1.0731
Ν	litrogen	9.0869
C	02	6.2899
E	tnyiene	4.5968

Environment – Waste to Diesel						
HSE ALERT HSE ALERT HSE ALER	T HSE AL	ERT HS	E ALERT	HSE ALEP	T HSE A	LERT
Disclaimer The information in this document is by GS Energy Consultant checking the article content contributor for verification. Various based on GSEC opinion and new updates may supersede the information available. We welcome any comments for improve	("GSEC") experts s relevant reference present edition. 1 ement.	and hence ma te sources use 'he articles cir	ay not be copied, and peer revier culated is given in	reproduced or ws performed. a good faith ba	represented wit The articles are sed upon the cu	hout written rrent
 No water for sewage 	e sludg	e				
 Other feed stock / L diesel) 	s requ	ire lit	tle wa	ter (1	.5 L w	ater
o Competing sy L diesel	ystems	use	up to 2	4 L w	ater /	/
• High yield (~65% ef	ficienc	y, be	st in cl	ass)		
 Actual conversion feedstock 	depen	ids en	iergy c	onter	it of t	he
 Testing with many biomass and sewa 	y dozer ge sluc	n type Ige	es of c	oal, w	aste,	
o Sulphur content e	easily r	emov	ed			
 Coal illustrates value of feedst 	that y tock	vield o	depend	ls upo	n heat	t
o Sewage slud 10,000 BTU,	ge vari /lb or §	es by 5,600	diet, kcal/k	but is kg	rougł	ιly
Coal/Day, Short & Metric Tons Coal/Yr, Mln Short & Metric Tons Heat Content, BTU/Lb & Kcal/Kg Vield, Gallons/Ton & Littes/Tonne	6,000 2.1 8,000 67	5,500 1.9 4,400 280	5,000 1.8 10,000 86	4,500 1.6 5,600 360	4,000 1.4 12,000 103	3,600 1.3 6,700 430
Diesel/Year, million gallons & litres	140.7	532.5	150.5	569.6	144.2	545.8

HSE ALERT HSE ALERT	HSE A	LERT HS	E ALERT	HSE ALERT	HSE AL	ERT HSE	ALERT
Disclaimer	- and Contra	and COSECT a		au not be cor	ind records red		
checking the article content contributor for	verification. Va	arious relevant re	eference source	s used and peer r	eviews perform	ed. The articles	are written
based on GSEC opinion and new upuales i information available. We welcome any cor	nay supersed nments for im	e the presenced provement.	ition. The atoue	s circulated is gri	en in good taun	based upon use	current
Wet Sludge (% moisture)	80%	375	750	1,125	1,500	1,875	2,250
Dewatered metric tons / day	25%	100	200	300	400	500	600
Capex		¢0.2m	\$0.5m	¢0.9m	¢1.0m	¢1.2m	¢1.Em
Gassification		\$6.0m	\$0.5m	\$0.6m	\$1.0m	\$1.5m	\$24.2m
Power Generator	\$1.0m	\$6.0m	\$9.9m	\$14.0m	\$17.9m	\$21.8m	\$25.7m
Start-up & Training		\$0.1m	\$0.1m	\$0.1m	\$0.2m	\$0.2m	\$0.2m
Contingency	10%	\$1.2m	\$2.1m	\$3.0m	\$3.6m	\$4.4m	\$5.2m
Total Power Capex		\$13.5m	\$22.6m	\$32.8m	\$39.4m	\$48.1m	\$56.8m
\$/capacity ton	· · · · ·	\$135,000	\$113,000	\$109,000	\$99,000	\$96,000	\$95,000
Operating Data							
Output kWhr/d		119,000	238,100	357,400	476,400	595,400	714,500
Sales \$/day @ \$/kWhr	\$0.07	\$8,300	\$16,700	\$25,000	\$33,300	\$41,700	\$50,000
Operating costs/day		-\$1,900	-\$3,700	-\$5,600	-\$7,400	-\$9,300	-\$11,100
Operating income/day		\$6,400	\$13,000	\$19,400	\$25,900	\$32,400	\$38,900
Annual pre-tax income (350) days)	\$2.2m	\$4.6m	\$6.8m	\$9.1m	\$11.3m	\$13.6m
Returns		6.0	5.0	4.0	4.2	4.2	4.2
Payback Yrs		6.U	20%	4.o	4.5	4.2	4.2
NPV 10%		\$6m	\$16m	\$25m	\$38m	\$48m	\$59m
NPV 10/6			210	، ال 24	23011	240111	